Homepage  /  IVF News

Early embryo cell fate discovered with whole genome sequencing

Tsvetana Stoilova

Progress Educational Trust

06 September 2021

| | | |
[BioNews, London]

Researchers have successfully decoded the human embryogenesis process by tracking somatic mutations in adult tissues.  

How a human develops from a single fertilised egg to an adult is a fundamental question in biomedical science. Reconstructing the fate of cells, and the genetic control of this, during early human embryogenesis remains challenging due to limitations on the experiments that can be performed on human embryos. To overcome these limitations, a study published in Nature used whole genome sequencing to identify mutations of 334 single cell colonies and 379 tissues samples taken from seven deceased donors. This analysis produced the world's largest single-cell whole genome sequencing dataset to date. 

'It is an impressive scientific achievement that, within 20 years of the completion of the human genome project, genomic technology has advanced to the extent that we are now able to accurately identify mutations in a single-cell genome. This technology will enable us to track human embryogenesis at even higher resolutions in the future,' said Dr Young Seok Ju from the Korea Advanced Institute of Science and Technology, Daejeon, South Korea and a co-author of the study. 

The research team identified mutations that occur spontaneously in early developmental cell divisions by analysing mutations in adult cells. These early mutations, also called genomic scars, can be used to reconstruct the embryonic development process. The researchers examined the genomic scars of each individual in order to map where each cell in the adult had originated during early embryonic cellular dynamics.

The data revealed that mutation rates are higher in the first cell divisions, but then decrease to approximately one mutation per cell later in life. The whole-genome sequencing analysis showed that our first cells contribute unequally to the development of the embryo and that one cell following the first division of the embryo always leaves more progeny cells than another one. The researchers concluded that three days after fertilisation, cells in the human embryo begin to differentiate into three germ layers and then specific tissues. 

The approach used in the study could be used to improve our understanding of rare diseases caused by abnormalities in embryonic development and thus improve the diagnostics and treatment for these patients.


Clonal dynamics in early human embryogenesis inferred from somatic mutation
Nature |  25 August 2021
Genomic data reveals new insights into human embryonic development​
Korea Advanced Institute of Science and Technology |  31 August 2021
Human cell differentiation, development process identified
Korea Biomedical review |  27 August 2021

© Copyright Progress Educational Trust

Reproduced with permission from BioNews, an email and online sources of news, information and comment on assisted reproduction and genetics.

Share IVF News on FaceBook   Share IVF News on Twitter


Add to Favorites | Reply to Ad | Tell Your Friends
Date Added: 06 September 2021   Date Updated: 06 September 2021
Customer Reviews (0)
write a review
(No reviews found. You may write the first one!)

Join Our Newsletter - Don't Miss Anything!!!

Stay in touch with the latest news by subscribing to our regular email newsletters